FRAUD DETECTION COMPLEX NEURAL NETWORK FOR FINANCIAL
FRAUD DATA USING AWS SAGE MAKER CLOUD COMPUTING
SOLUTIONS

1 EXECUTIVE SUMMARY

This report considers how Machine Learning can provide a solution for the issue of fraud such that
affects COMPANY as a Share registrar and Pension service provider.

In the first part of the report AWS Sage Maker is outlined as a potential cloud architecture for creating
a fraud detection model, with the second part of the report showcasing a fraud detection deep
learning artificial neural network artifact created using public simulated dataset of credit card
transactions, which establishes the principles and approach needed to apply similar model for
COMPANY specific problems and datasets.

Data and privacy remain one of the key considerations and a plan for safe implementation within
COMPANY is presented, whereby the PROD data could be used within COMPANY’s own infrastructure
and system to first generate an anonymized or even fully synthetic / simulated dataset. Once such a
data model is acquired, it is uploaded to a Cloud Architecture of choice, where a model is trained,
tested, validated, and adjusted until it produces satisfactory results. Such a model is then moved on-
premises and can be used to tackle real-world scenarios using PROD data.

Implementation of such a fraud detection system would need to be divided into several stages, based
on typical business use cases and complexity of the ML solution required.

First stage, which is showcased in the artifact using public dataset, would focus on transactions - as
units for analysis - with the neural network looking at features of a transaction itself for patterns
indicating fraud. Future stages / updates could see an Ensemble model (a model made up of many
specialist models) take a holistic view of an account or entire dataset to spot Anomalies and/or
patterns in the data and could be used to spot fraud type or fraudster gangs.

The artifact is developed in Google Collab using TensorFlow, with a baseline model contrasted against
progressively mode advanced experiments, allowing for objective comparison of model’s improving
ability to predict and generalize. Focus is placed on data pre-processing, which is shown to have strong
influence on the model’s ability to learn patterns. The results achieved indicate that COMPANY will
best be served by generating its own dataset and supplementing it with simulated data, where each
feature can be thought through and controlled, so that the model has best chance to find patterns.

The volume of data is not atissue in such a scenario as Transfer Learning can be applied, where a small
dataset can be used to fine-tune an established State of the Art model in the Fraud detection category
to specialize it for COMPANY data.
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6 EVALUATION OF THE USE OF CLOUD COMPUTING FOR MACHINE LEARNING

6.1  APPLICATION PROPOSAL

As COMPANY moves into the Al era, a plethora of applications present themselves all of which would
benefit from an early adoption by the COMPANY of the Cloud technologies such as are offered by e.g.
Amazon’s AWS. This report will investigate the Deep Learning aspect of the Al/ML solutions and
propose a Fraud Detection Algorithm and a specific data secure way to develop it using AWS
SageMaker in line with the COMPANY Al Policy and Al handbook.

The clear direction set by COMPANY’s CEO to become a global share registrar and the focus placed on
fraud prevention makes a Fraud Detection Algorithm a must have for COMPANY. Deep Learning
Artificial Neural Networks have been proven extremely accurate in finding patterns and establishing
decision boundaries for such problems. The app would be able to predict or raise a ‘Red Flag’ against
ongoing transactions indicating possibility of fraud, ideally allowing COMPANY to act before fraud is
committed. App would be held on-premises and be connected to an appropriate endpoint from where
it could monitor ongoing transactions within current COMPANY infrastructure.

Please note that Al can help fight fraud in multiple ways (Lopez-Rojas & Axelsson, Money Laundering
Detection using Synthetic Data, 2012) and with a focus on a specific part of the financial industry
(Lopez-Rojas, Axelsson, & Gorton, RETSIM: A shoe store agent-based simulation for fraud detection,
2013). While this approach focuses on transaction data, an alternate approach, for example, would be
a voice transcription algorithm that listens in on the incoming calls to detect fraudulent phrases or
voice patterns and escalate the conversation to an experienced staff member.

COMPANY seems to approach the topic of Al with extreme caution, which is due to its responsibility
as a share registrar and pension provider for the safety and privacy of its client data, which is why this
report proposes to leverage Cloud Computing for Machine Learning only in so much as its necessary
and only using synthetic / anonymised data (Lopez-Rojas E. , 2024).

6.2  PLATFORM INVESTIGATION AND CRITICAL EVALUATION

AWS SageMaker could be leveraged for model building (training and evaluation) using an already pre-
processed, anonymised and synthesized dataset, which would be prepared on-premises and sent to
SageMaker environment over secure connections.
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Figure 1 - COMPANY Al Model development process using AWS SageMaker (step by step) Source: (Kulpa, 2024) Link

Figure above shows a step-by-step process for how such an app could be developed using AWS
SageMaker with a focus on data security as described previously.

AWS was chosen for this report, as it is already being implemented across COMPANY on some key
PROJECTS, however same results can be achieved using competitors such as Google or Microsoft or
even using on-premises hardware if significant ongoing investment was made in this area. Naturally,
the difference is that AWS provides world-class ML capabilities on a per hour / on-demand basis,
therefore significantly reducing costs of COMPANY’s Al implementation (Amazon Inc, 2024).

As the previous figure shows AWS would be utilised especially for model building, training, and
validation itself which are the aspects of Neural network design which require specialist hardware. If
such a model was to be trained on a local device, such as a Dev laptop, model’s training time could be
days if not weeks (in a simple experiment using a relatively small dataset, the CPU training time per
epoch was around 1:30 min, while a GPU training took 3 sec per epoch using a medium range, free
access Google Collaboratory graphics card — Tesla T4). Since models inevitably grow in complexity as
the business use case develops it would be best to setup a scalable infrastructure from on-set and
prepare for the growth (Amazon Inc, 2024).

First COMPANY database structure for Share dealing and Pensions transactions must be analysed to
establish the relevant features for the model to use, then PROD data extract with said features and a
label identifying known fraud transactions could be performed. Data is then anonymized by removing
any person specific details. Keep in mind that names, addresses and other confidential information
are NOT VIABLE features for a model, so are not even part of the PROD dataset. Dataset could then
be further synthesized by replicating it using a separate algorithm which replaces specifics of a given
transaction with randomised / changed details while preserving the data structure and relationship
between features. An example of such an approach is an external service provided by PaySim (Change,
2024), which learns the data model used by any payments related business to then generate fake
transactions in keeping with the structure of the original dataset. Even if original transaction data were
used, it would be turned into tensors which provides another degree of separation of the train/test
dataset from the PROD data. An example of this is where the value of the transaction is turned into a
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categorical variable of small, medium, large, exceptionally large, etc., depending on if the value e.g.
falls between £0 - £1000.

It is unlikely that the fraud event is related to the specific amount being stolen, hence the actual
amount might not be a valid feature. However, the comparative value of the transaction, e.g. as
compared to average transactions for this account, could be used as part of feature engineering to
bolster model’s predictive capabilities.

Such a pre-processed dataset would then be moved over to AWS SageMaker for model generation.
An artifact of such a model is created in part two of this report. Creation of the model would rely on
AWS SageMaker’s Jupyter Notebooks which allow for easy access to ML and visualization tools and
the model can be coded in Python using TensorFlow or PyTorch with a variety of pre-built models
available for Transfer Learning approach.

The fraud problem at hand requires a classification model, which can generate a non-linear decision
boundary. The XGBoost model is a good example of AWS SageMaker’s pre-built model offering that is
specifically optimized for classification tasks and can handle imbalanced datasets which is a common
feature of fraud detection scenarios (Amazon Inc, 2024).

As previously mentioned, the key feature of AWS SageMaker is its ability to quickly train the model
using its infrastructure specifically designed for this task. Additionally, AWS offers Hyperparameter
tuning, where these are automatically adjusted to optimize model’s performance.

While this report suggests exporting the trained model from AWS to on-premises in line with data and
ML policy at EQ, it is worth mentioning that AWS also offers Deployment and monitoring capabilities,
which would allow for greater efficiency of the pipeline as the model develops and need retraining or
updating.

It is worth mentioning that in an ideal scenario, should AWS be trusted with our data at some future
point, development of such Al apps as this one can be done with relative ease even by those less
experienced in Al/ML thanks to built-in Autopilot tools which guide the user through the development
process.

Digital Channels

=i

Web Clients
Mabile Client

- On-Premise - Experian

SageMaker Ecosystem

' 1
n AWS Lambda ! '
'

'

S

Customer
Transactions

AWS DMS

API Gateway

Raw Data

D\ :

[

Endpoint

Categorised
Transactions

AWS Glue

Experian CaaS
ML Model

Ogg

' Amazon SageMaker

Staging

Batch Transform

......................

1
L@W@W

AWS Glue Enriched

Ingestion

1
Transformation

1l ]
T
Analytics

§

: Amazon SageMaker

'
AWS 1
Marketplace 1

&

@ |

ER

Train ML Mode!

|

B @

h
Experian CaaS  Experian Salary
ML Model ML Model

& @

: Experian Ba\ance Experian Income .
L Mod: ML Model U

Build ML Model

4~s"

Package ML Model

Figure 2 - Example of AWS SageMaker Architecture utilising many AWS and SageMaker services. Source: (Nandwani, Oyibo,

& Shelton, 2022) link



https://aws.amazon.com/blogs/architecture/how-experian-uses-amazon-sagemaker-to-deliver-affordability-verification/

A104 Machine Learning using Cloud ComputingArkadiusz Kulpa

7 PRODUCTION OF AN ARTIFACT THAT DEMONSTRATES DEEP LEARNING

7.1  PREAMBLE

This artifact will train and validate a neural network against two datasets that have previously been
used to showcase Complex neural network’s ability to find patterns in financial datasets. Artifact is
developed in Google Collab using TensorFlow and in later stages shall be transferred over to AWS
SageMaker should it be able to help tackle the problem of fraud.

7.2  DATA DESCRIPTION

The first step in developing an ML model is to find the correct data. COMPANY data is not used in this
report, but two public datasets have been used that contain financial transactions and identified
(labelled) fraud occurrences within.

7.2.1 Dataset 1: Credit Card Transactions Fraud Detection Dataset

This is a dataset generated by the Sparkov Data Generation tool (Shenoy, 2024). This dataset required
pre-processing as it contains raw (simulated) customer data, which serves to exemplify how
COMPANY will have to approach its data pre-processing. The simulator allows user to select ‘profile’
for data generation and this dataset contains a complex mix of transactions across all profiles to
generate a more realistic representation.

trans_date_trans_time cc_num  merchant category amt first last gender  street  city state  zip lat long city_pop job dob trans_nur unix_time merch_lat merch_lor is_fraud
0 01/01/201900:00 27031861 fraud_Ripf misc_net 497 Jennifer Banks  F 561 Perry ( Moravian F NC 28654 360788 -81.178 3495 Psycholog ###44#¥# 0b242abb 1.3E+09 360113 -82.048
1 01/01/201900:00 6.3E+11 fraud_Hell grocery pc 107.23 Stephanie Gill F 43039RileOrient WA 99160 48.8878 -118.21 149 Specialed ###84884 1{76529f€ 1.3E+09'49.15004( -118.19
2 01/01/201900:00 3.9E+13 fraud_Lincentertainn  220.11 Edward  Sanchez M 594 White Malad City ID 83252 42.1808 -11226 4154 Naturecos 21a22d70 1.3E+09 43.1507 -112.15
3 01/01/201900:01 35340937 fraud_Kutcgas_trans 45 Jeremy  White M 9443 Cynt Boulder  MT 59632 462306 -112.11 1939 Patentattc 60849c16 1.3E+09 47.0343 -112.56
4 01/01/201900:03 3.8E+14 fraud Keelmisc_pos  41.96 Tyler Garcia M 408 Bradle Doe Hill VA 24433 384207 -79.463 99 Dancemo ###84444 ad1d7549 1.3E+09 38675 -78.632
5 01/01/201900:04 4767265 fraud_Strogas_trans; 9463 Jennifer Conner F 4655 Davi Dublin ~ PA 18917 40375 -75205 2158 Transport| 84444444 180a841a 1.36+00 40.6534 -76.153
6  01/01/201900:04  3E+13 fraud_Row grocery ne  44.54 Kelsey  Richards F 889 Sarah Holcomb KS 67851 37.9931 -100.99 2691 Arboricultt ## 83ecicc8 13E+09'37.16270: -100.15
7 01/01/201900:05 60113607 fraud_Congas_trans; 7165 Steven  Williams M 231 Flores Edinburg VA 22824 388432  -786 6018 Designer, | ##: 6d294ed2 1.3E+09 389481 -78.54
8  01/01/2019 00:05 4922710€ fraud_Her: misc_pos 4.27 Heather Chase  F 6888 Hick Manor  PA 15665 40.3359 -79.661 1472 Publicaffa 1c28024ce 1.3E+09 40.3518 -79.958
9 01/01/201900:06 27208302 fraud_Sch grocery_pc  198.39 Melissa  Aguilar  F 21326 Tay Clarksville TN 37040 36522 -87.349 151785 Pathologic 30b901dea 1.3E+09 37.1792 -87.485
10 01/01/201900:06 4.6E+12 fraud Ruttgrocery pc  24.74 Eddie  Mendez M 1831 Faitt Clarinda 1A 51632 40.7491 -95038 7297 ITwainer ###44aus d71c95ab 1.36+09740.27589 -96.012

11 01/01/201900:06 3.8E+14 fraud_Kerl shopping_ 7.77 Theresa  Blackwell F 43576 Kris Shenando WV 25442 39.3716 -77.823 1925 Systems d #é####ss 3c74776e 1.3E+09 40.1039 -78.624

00 0000000000000 00000000000000

12 01/01/201900:06 1.8E+14 fraud_Locl grocery_pc 7122 Charles Robles M 3337 Lisa Saint Petel FL 33710 27.7898 -82.724 341043 Engineer,| #2482822 c1d9a7dd 1.3E+09 27.6306 -82.309
13 01/01/201900:07 55598574 fraud _Kiet grocery_pc 96.29 Jack Hill M 5916 Sus: Grenada CA 96038 416125 -12253 589 Systems a 413636e7 1.3E+09 416575 -122.23
14 01/01/2019 00:09 3514865€ fraud_Beie shopping 7.77 Christoph Castaned: M 1632 Cohe High Rolls NM 88325 329396 -105.82 899 Naval arch 8a6203aff 1.3E+09 32.8633 -106.52
15 01/01/2019 00:09 6011999€ fraud_Sch shopping_ 326 Ronald Carson M 870 Rochz Harringtor NJ 7640 409918 -7398 4664 Radiograp ###4¥444 baaeOb09 1.3E+09 418312 -74.336
16 01/01/201900:10 60118602 fraud_Leb: misc_net 327 Lisa Mendez F 44259 Bet Lahoma  OK 73754 36385 -98.073 1078 Programm f###4844 991c0480 1.3E+09 "36.38409 -99.048
17 01/01/201900:10 35654232 fraud_May shopping. 341.67 Nathan Thomas M 4923 CamCarliste  IN 47838 38.9763 -87.367 4081 Energy eng f12cf52be 1.3E+0938.674491 -88.306
18 01/01/201900:11 2348245C fraud_Kon food_dinir 63.07 Justin Gay M 268 Hayes Harborcre PA 16421 42.1767 -79.942 2518 Eventorga 8500f3d4! 1.3E+09 414303 -79.493
19 01/01/201900:12 "4956828€ fraud _Sch grocery_pc 44.71 Kenneth Robinson M 269 Sanct Elizabeth NJ 7208 406747 -74224 124967 Operation. #8#2%82% 09effOc80 1.3E+09 40.0796 -74.848
20 01/01/201900:13 44697771 fraud_Bau grocery_p¢ 57.34 Gregory Graham M 4005 Dani Methuen MA 1844 42728 -71.181 47249 Marketres ###24882 13%albee 13E+09 422688 -71.217
21 01/01/201900:14 2305336¢ fraud_Han gas_transj 50.79 Jeffrey Rice M 21447 PovMoulton 1A 52572 40.6866 -92.683 1132 Probation b9c4615b 1.3E+09 40.1889 -91.955
22 01/01/201900:17 1.8E+14 fraud_Klin grocery_ne 46.28 Mary Wall F 2481 Mills Plainfield NJ 7060 406152 -74.415 71485 Leisurece 19e23c6a 1.3E+09 40.0219 -74.228
23 01/01/201900:17 6.3E+11 fraud_Pacishopping 9.55 Susan Washingtc F 759 Erin M May LS 76857 319571 -98.966 1791 Corporate cdb4daeb 13E+09 316264 -98.61
24 01/01/2019 00:18 "4428780€ fraud_Lest shopping 2295 Richard Waters M 7683 Nata Waukesha Wi 53186 42.9993 88.22 95015 Therapist, d2432bfe: 1.36+09'43.37504( -89.055
25 01/01/201900:18 3.4E+14 fraud_Kun misc_net 2.55 Jodi Foster F 551ZachaBailey  NC 27807 358072 -78.089 6629 Call centre 841 abe0B76c 1.3E+09 36.7499 -78.678
26 01/01/201900:20 3.7€+14 fraud_Dec grocery p¢  64.09 Daniel  Escobar M 61390 HayRomulus M1 48174 422203 -83.358 31515 Police offi s¥##k#ss 613636611 1.36+09'42.36042( -83.552
27 01/01/2019 00:21 43342305 fraud_Brue misc_pos 6.85 Scott Martin M 7483 Navi Freedom WY 83120 43.0172 -111.03 471 Education ######## f3c43d33¢ 1.3E+09 43.7537 -11145
28 01/01/2019 00:22 42259901 fraud_Kun grocery_pc 90.22 Brian Simpson M 2711 Durz Honokaa HI 96727 20.0827 -155.49 4878 Physiothes #2222882 95826e3c 1.3E+09 1956 -156.05

Figure 3 - Dataset 1 (requires pre-processing)

The synthetic approach to dataset creation introduces the possibility of bias in the data if the
simulated data’s setup be influenced by preconceptions about fraud. This suggests that only a
representative or real sample of fraud data will ensure objectivity of our data.

The most important aspect of the data, however, is the features that are deemed to hold the pattern
that the neural network is expected to find and learn. Identifiers within the dataset (“cc_num” and
“trans_num”) will need to be removed, and impact of geospatial data needs to be considered, e.g.
latitude and longitude can be processed directly, but additional transformation might be required to
represent cluster locations or meaningful groups of data.

While we can establish patterns for victims of fraud using customer’s age, gender, or job, we need to
consider that the fraudster account will contain made up information and might introduce bad data
into our network. Ideally features might need to be stripped to only those that cannot be invalidated
by the fraudster actions easily. It might be worth looking at transactions for a given account rather
than in aggregate and in the context of said account consider the time between this and previous

7
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transaction, distance of this transaction to the mean or median for the account. Without such
consideration asking a neural network to learn a pattern based on someone’s age, gender, city, job,
or date of birth is like asking it to do palm reading and does not seem to provide a scientific basis for
pattern discovery.

7.2.2 Dataset 2: Synthetic Financial Dataset for Fraud Detection

This is a dataset generated by the PaySim mobile money simulator (Lopez-Rojas E., 2024). Data pre-
processing has been managed by the author and the downloadable dataset is already in a normalized
state. It contains thirty columns of values between 0 — 1.0 and the feature names are not identifiable,
aside from the fraud label (Class). This dataset approximates the state of the COMPANY’s PROD
dataset when imported into AWS.

This dataset’s fraud instances are where fraudulent agent aims to profit by taking control of accounts,
then transferring all funds to another account and finally withdrawing cash. System also flagged
transactions as fraud whenever big transfers between accounts were attempted (over 200 000 in a
single transaction). Transactions identified as fraud were subsequently cancelled, therefore several
features (OldbalanceOrg, newbalanceOrig, oldBalanceDest and newbalanceDest) had to be removed
during pre-processing stage to prevent the model from learning how to discover fraud by looking at
which transactions were cancelled and highlighting those.
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Figure 4 - Dataset 2 (already pre-processed by original author / third-party)

7.3  MACHINE LEARNING PIPELINE

To preprocess dataset 1, we first drop columns which cannot serve as features in fraud detection
("cc_num", "trans_num"), those where word embedding is usually required (e.g. "job"), but is not part
of our model design, or which introduce high dimensionality ("street", "city", "zip").
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rom sklearn.preprocessing import StandardScaler, OneHotEncoder, FunctionTransformer
rom sklearn.compose import ColumnTransformer

rom sklearn.pipeline import Pipeline

rom sklearn.impute import SimpleImputer

rom sklearn.base import BaseEstimator, TransformerMixin
import datetime
import numpy as np
import pandas as pd

Custom transformer to calculate age from DOB

AgeTransformer (BaseEstimator, TransformerMixin):

ef fit(self, X, y=None):
return self

def transform(self, X):
return X.applymap(lambda dob: datetime.datetime.now().year - datetime.datetime.strptime(dob, '%¥-X%m-%d').year).values.reshape(-1, 1)

Custom transformer to extract date time features
DateTimeFeaturesTransformer(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
return self

def transform(self, X):
dt_series = pd.to_datetime(X.iloc[:, ©], format="%Y-Xm-%d %H:%M:%5")
return np.vstack([dt_series.dt.hour, dt_series.dt.dayofweek]).T

num", "trans_num", * " " "job™, “"Unnamed: 8", "merchant”, “"first™, "last"], axis=1)

train_data = train_data.drop(["c
c "trans_num”, “street”, " *, "zip”, "job", "Unnamed: 8", "merchant", "first", "last"], axis=1)

test data = test data.drop(["

num” ,

# Separate the target variable before applying transformations
y_train = train data["is_fraud”].values # Convert to numpy array
y_test = test_data["is_fraud"].values # Convert to numpy array

X_train = train data.drop(["is_fraud"], axis=1)
X_test = test_data.drop(["is_fraud"], axis=1)

Figure 5 - Dataset 1 pre-processing code.

Then the continuous and categorical features are split, the continuous values are scaled (normalized)
into range of 0-1, while the categorical features are one-hot encoded. Age is derived from Date of
Birth and DateTime is transformed to make e.g. ‘day of the week’ or ‘hour’ a feature to be looked at
by the neural network.

rom sklearn.preprocessing import OneHotEncoder

# Select the continuous columns
continuous_cols = ["amt’, "lat’, "lor ] merch_lat®, "merch_long']
columns for one-hot encoding
categorical cols = ['category’, 'gender’, ' # Add other categorical columns as necessary

numeric_transformer = Pipeline(steps=[
"imputer’, SimpleImputer(strategy="median’)}),
'scaler’, StandardScaler())])

categorical_transformer = Pipeline(steps=[
"imputer’, SimpleImputer(strategy='constant’', fill value="missing'}),
", OneHotEncoder({handle unknown="ignore'))])

"onehot

preprocessor = ColumnTransformer(
transformers=[
"num’, numeric_transformer, continuous cels),
"cat’, categorical_transformer, categorical_cols),
For high cardinality features, you could use a different strategy, e.g., feature hashing

¥

o
ge', AgeTransformer(), ['dob’']),
t', DateTimeFeaturesTransformer(), ['trans_date trans_time"]

1

remainder="drop")
# Fit on training data and transform both training and test data
train_features = preprocessor.fit_transform(X_train)

test_features = preprocessor.transform{X_test)

Figure 6 - Dataset 1 pre-processing code continued




A104 Machine Learning using Cloud ComputingArkadiusz Kulpa

These are then turned into a tensor and saved as X_train, y_train, X_test and y_test (Dataset 1 came
already split into train and test with a 75/25 ratio).

Data then needs to be resampled due to the heavily unbalanced nature of fraud datasets. The
RandomUnderSampler from the Imblearn.under_sampling library is used to achieve a 2:1 ratio of non-
fraud to fraud transactions. It takes snippets from the non-fraud transactions until a preset ratio is
achieved, as shown below.

majority

Onginal dataset
ginal Final datasel

Figure 7 - How Under Sampling works.

# Random Und

port imblearn
m imblearn.under sampling import RandomUnderSampler

undersample = RandomUnderSampler(sampling strategy=8.5)

_train_under, y train_under = underszample.fit resample(X train, y_train)

st_under = undersample.fit resample(X test, y test)

Figure 8 - Under sampling Code.

Visualizations of data are mostly handled by matplotlib.pyplot and seaborn libraries, with some
functions saved within an external helper_functions.py file for reproducibility and clarity.
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Class repartition before and after undersampling
1e6 Before After

1.2 1

104

0.8 1

count
count

0.6

0.4 1

0.2

0.0 -

is_fraud is_fraud

Figure 9 - Visualization of dataset before and after Under sampling.

A base-model is created to benchmark future optimisations against, using TensorFlow Sequential API
with a basic twenty-four neuron input layer utilising “relu” activation and a single neuron output layer
with “sigmoid” activation. Binary cross entropy has been used for this classification task and a jack-of-
all-trades optimizer Adam was applied. A tensorboard callback will generate data for further analysis,
however two visualizations are generated for each model featuring loss and accuracy curves and a
confusion matrix.

rain_under,
unctions.create_tensorboard_callback

ral_accur

val accuracy: 8.8657
val_accuracy: @.8
ral_accuracy: @.8
val_accur

- accuracy 8. val_accuracy: 8.8

1 - accuracy val_accuracy: @.8519

ral_accuracy: @.8923
val_accurac

val accuracy: @

Figure 10 - base model architecture and training / fitting process.
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7.4  EXPERIMENTATION FOR LEARNING OPTIMISATION

7.4.1 Base Model under sampled

The optimization was divided into two pillars. model_0 is the base model utilizing Dataset 1 which
underwent pre-processing, which itself could have introduced errors. Therefore model_1 was created
which had the same structure as model_0 but was fitted against dataset 2, which was pre-processed
by the dataset’s author already (and so assumed to work for ML).

Furthermore, each base model features sub-models (a, b, c) each attempting to improve the scores
by introducing a single modification.

First observation for both base models is that the validation accuracy curve, although moving in the
right direction, suffers from volatile changes. This could indicate that the neural network is struggling
to learn the pattern within the data, that the pattern is conflicting or that the data requires reshuffling.

= fraining_loss

— training_loss wal_loss

val_loss

M
Epochs

Epochs

Accuracy
Accuracy 094
— [raining_accuracy
val_accuracy

R A

—— training_accuracy
wal_accuracy

Figure 11 - Base Model's Loss and Accuracy
Layers: input twenty-four neurons RELU, no hidden layer, output 1 neuron Sigmoid

loss = BinaryCrossentropy, Optimizer = Adam
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Confusion Matrix Logit Confusion Matrix Logit

2
E 226 E 2
* (5.27%) - 0. 58%:
g ]
a ]
E =
] o
: 3
= =
P 518 1627 2. 1z 59
f (24.15%) (75.85%) B (35.16%) (64.84%)
' ' ' '
not_fraud frawd not_franed fraud

Prediched Class

model 1

Figure 12 - Confusion Matrix for base models.

Layers: input twenty-four neurons RELU, no hidden layer, output 1 neuron Sigmoid

loss = BinaryCrossentropy, Optimizer = Adam

7.4.2 Base Model Full dataset

While it is recommended to under sample fraud datasets to make the classes more balanced, it only
makes sense to expect the model to then be able to generalize across the entire dataset. The below
figures show a confusion matrix for the full datasets (generating loss curves would involve fitting the
model against the full dataset which would obscure the patterns learned, if any).

Confusion Matrix Logit Confusion Matrix Logit

313
{0.55%])

30442
{5.50%]

rot_fraud

not_frawd

True Class
True Class

- 518 1627 3 61 37
B (24.15%) (75.85%) B 162.24%) (37.76%)
riat_fraud fraud rot_fraud frawd

Predicted Class Prediched Class

T

I
moael_ 1L

Figure 5 - Confusion Matrix for Base Models using FULL dataset (not under sampled)

The confusion matrix shows that the model 0 for which we controlled the pre-processing process
does generalize for the entire dataset, while model_1 where pre-processing has been performed by a
third party (author of the simulated dataset) looses on accuracy considerably, generating multiple
false negatives (fraud instances that were predicted as not being fraud).
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7.4.3 Adding a Hidden layer

Addition of a hidden layer containing twenty-four neurons (“relu” activation) did improve the accuracy
of the model_0, but has cause significant overfitting for model_1 which was not able to predict when
working with even the under sampled test dataset:

_train_under, y_train_under,
helper_funct: eate_tensorboard callback

data=(X_test_under, y_test_under),

ensorBoard log files to:

ral_accur

val_accuracy
1 _accur

val_accur

val_accuracy

wal accur

val_accuracy

val_accur

wal accur

val_accur

Figure 13 - model_0_b - architecture and fitting / training shown.
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Figure 14 - Accuracy and Loss for a Complex neural Network with 1 Hidden layer of twenty-four neurons ("relu")
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7.4.4 Additional Epochs
Model_0 seems to be the one able to satisfy accuracy conditions for a successful ML model to predict

fraud with ability to generalize to a wider unseen dataset. However, its learning curves have not yet
plateaued after only 10 epochs, therefore additional training time might still improve the results.

; [62] model @

optimizer=tf.
metric

i t time

start_time = time.time()

€ = model_@_c. _unde _under,
create_tensorboard_callback

st_under},

- val_accuracy:

val_accuracy:

I 34 25 2741 - accu

Figure 16 - model_0_c architecture and fitting / training process shown.
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Figure 17 - model_0 (where pre-processing was controlled by us) with Hidden layer of twenty-four neurons ("relu”) and given
30 epochs to train.

As can be seen from the figure above, where results of 30 epoch training of our complex neural
network are shown, the network is able to predict with 95% success rate against an unseen data,
which is a result that should confidently satisfy a business requirement for a fraud detection ML
solution.

7.5  EXPERIMENTATION FOR PERFORMANCE

Total training time for the most complex model in this artifact —model_0_c—is a still relatively modest
82.20 seconds for 30 epochs (2-3s per epoch) and considering the size of the dataset GPU processing
is not expected to have a significant impact on the training time. In fact, when connected to a T4 GPU
on Google Collab the training time for the same model was 155.30 seconds (4-5 seconds per epoch)
which is twice as long. This is due to the benefits of GPUs and TPUs being most visible for the ML tasks
that require significantly more calculation.

The fraud problem that is being tackled is based around a dataset that is a simple data frame, albeit
with over a million rows, however voice and image processing are good examples where the number

of calculations grows exponentially.

A typical Convolutional Neural Network employed to process even simplest of images would have
many more trainable parameters. For example, one processing a simple 224 by 224 pixel images based

17



A104 Machine Learning using Cloud ComputingArkadiusz Kulpa

on the efficientnetb0 CNN model has over four million parameters, as compared to our ‘complex’
neural network model_0_c that has only 2473 parameters.

model_@_c.summary{} model_8.summary ()
Model: "sequential_ 2"
output Shap

[{MNone, 224, 2

Total p
Trainable para
Non-trainable params:

Trainable param:
Non-trainable

Figure 18 - comparison of a simple fraud detection neural network with a single hidden layer with efficientnetbO model.

7.6  BUSINESS FACTORS AND DEPLOYMENT APPROACH

Although a successful fraud detection model was developed based on the simulated dataset
generated against credit card fraud scenarios, it is not immediately transferable to serve COMPANY’s
needs.

Firstly, it does not represent COMPANY’s business model, which focuses on providing share and
pension services. As such the nature of fraud experienced by our company will be different from that
found in other parts of the industry. Most importantly, valid features will need to be identified, as we
have seen that control of the dataset, its features and pre-processing it is subjected to vastly affect
the results achieved and whether the model can generalize to a wider unseen dataset.

Secondly a viable implementation strategy needs to be devised, which would answer the question of
where, when, and how the model can act on data in our PROD systems. One option is for it to analyse
new transactions live as they are happening and although this approach would provide greatest
benefit and ability to proactively tackle fraud it would also face additional complexity in that some
features of the transaction are only available after it has been finalized.

Implementation of such a fraud detection model would introduce extra cost and liability for any false
positives the model brings up, both in terms of staff time and resources that need to be dedicated to
investigating such false positives, but also Service quality and cost due to potential inconvenience for
customers should COMPANY decide to act based on a false positive flag from the model. However, it
might be argued that the benefit from catching even a single fraudster trying to steal vast sums of
money outweighs the necessary operational cost of implementing such a solution.

Furthermore, applying such a model, whether live or after finalization of transactions would require
us to fulfil certain legal conditions one of which is acknowledgement from our customers to be
assessed by an Al system. Biggest challenge however lies in COMPANY being a data processor for our
clients and to implement such a neural network we would need to negotiate access to client PROD
data, even if it is only needed for initial anonymization. It could, however, be argued that such data
analysis lies within EQs rights to inspect and improve our own services as provided to the client.

The architecture using AWS SageMaker has already been outlined in part one of this report, however
itis worth elaborating on the process once the model is exported from the cloud platform. The model
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would at that point have been trained and validated on the anonymised dataset(s) and be saved in an
exportable / importable format, such as HDF5.

To avoid sending even the anonymized and normalized Production data across to the AWS SageMaker
platform which would usually handle deployment through its APIs, COMPANY could setup its own API
system on-premises, as the model doing the predictions does not require bespoke ML resources that
AWS offers.

Alternatively, COMPANY could embed the model’s prediction call directly in relevant application code.
This would allow for a low latency solution that can serve as the last gatekeeper before a transaction
is finalized. In POC implementation the model could serve as an additional check that fires up a red
flag to a relevant human operator, who then investigates the alert. This way the application could
operate unchanged, eliminating the risk of the model causing unforeseen delays or cancellations to
transactions, which in the case of a live market especially could lead to financial repercussions down
the road.

8 PERSONAL REFLECTION ON THE LEARNING EXPERIENCE

This Fraud Detection Neural Network report / proposal is a considerable step-up from the last
proposal, which dealt with effectively a third-party solution implemented using either COMPANY’s
own or cloud architectures. It is also, perfectly aligned with COMPANY’s Al policy which does seem to
favour solutions developed in-house over those procured from third parties due to data privacy and
security constraints. What | have learnt while exploring TensorFlow AWS SageMaker and potential
applications of ML/ Al within COMPANY will, | have no doubt, help resolve some of the more pressing
needs of the company and modernize our processes. The next step for exploring the topic of fraud
prevention using complex neural networks at COMPANY, or even any other ML applications developed
in house, will be to setup an AWS SageMaker environment that can built upon the network developed
in this artifact with a data specifically simulated to fit EQs share and pension transaction scenarios.

What | have learnt about fraud, can be expanded with knowledge from the business about what kind
of fraud occurrences we most want to track and predict and a wider collaboration within the business
would enable for this proposed application to be fine-tuned to the existing problems within the
company.
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